Model of Human Fetal Growth in Hypoplastic Left Heart Syndrome: Reduced Ventricular Growth Due to Decreased Ventricular Filling and Altered Shape
نویسندگان
چکیده
INTRODUCTION Hypoplastic left heart syndrome (HLHS) is a congenital condition with an underdeveloped left ventricle (LV) that provides inadequate systemic blood flow postnatally. The development of HLHS is postulated to be due to altered biomechanical stimuli during gestation. Predicting LV size at birth using mid-gestation fetal echocardiography is a clinical challenge critical to prognostic counseling. HYPOTHESIS We hypothesized that decreased ventricular filling in utero due to mitral stenosis may reduce LV growth in the fetal heart via mechanical growth signaling. METHODS We developed a novel finite element model of the human fetal heart in which cardiac myocyte growth rates are a function of fiber and cross-fiber strains, which is affected by altered ventricular filling, to simulate alterations in LV growth and remodeling. Model results were tested with echocardiogram measurements from normal and HLHS fetal hearts. RESULTS A strain-based fetal growth model with a normal 22-week ventricular filling (1.04 mL) was able to replicate published measurements of changes between mid-gestation to birth of mean LV end-diastolic volume (EDV) (1.1-8.3 mL) and dimensions (long-axis, 18-35 mm; short-axis, 9-18 mm) within 15% root mean squared deviation error. By decreasing volumetric load (-25%) at mid-gestation in the model, which emulates mitral stenosis in utero, a 65% reduction in LV EDV and a 46% reduction in LV wall volume were predicted at birth, similar to observations in HLHS patients. In retrospective blinded case studies for HLHS, using mid-gestation echocardiographic data, the model predicted a borderline and severe hypoplastic LV, consistent with the patients' late-gestation data in both cases. Notably, the model prediction was validated by testing for changes in LV shape in the model against clinical data for each HLHS case study. CONCLUSION Reduced ventricular filling and altered shape may lead to reduced LV growth and a hypoplastic phenotype by reducing myocardial strains that serve as a myocyte growth stimulus. The human fetal growth model presented here may lead to a clinical tool that can help predict LV size and shape at birth based on mid-gestation LV echocardiographic measurements.
منابع مشابه
Comparison of Fetal Echocardiography for Fetal Cardiac Structure in Women with Gestational Diabetes Mellitus and Normal Pregnancies
BackgroundIncreased metabolic rate of hyperglycemia in gestational diabetes causes macrosomia, which can also affect the fetal heart. The thickness of the walls of the heart and its function in women with gestational diabetes mellitus (GDM) can change over time before treatment. We aimed to evaluate fetal cardiac structure in terms of ventricular wall thickness and its function in women w...
متن کاملLeft ventricular dysfunction in the fetus: relation to aortic valve anomalies and endocardial fibroelastosis.
OBJECTIVE To examine the relation between a characteristic form of left ventricular dysfunction in the fetus and abnormalities of the aortic valve and endocardial fibroelastosis of the left ventricle. DESIGN A retrospective study to examine the correlation between echocardiographic findings in the fetus and postnatal or necropsy findings. SETTING Tertiary referral centre for fetal echocardi...
متن کاملPredictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome.
BACKGROUND Aortic stenosis in the midgestation fetus with a normal-sized or dilated left ventricle predictably progresses to hypoplastic left heart syndrome when associated with certain physiological findings. Prenatal balloon aortic valvuloplasty may improve left heart growth and function, possibly preventing evolution to hypoplastic left heart syndrome. METHODS AND RESULTS Between March 200...
متن کاملHolt-Oram Syndrome: A Rare Variant
Holt-Oram syndrome is an autosomal dominant disorder, characterised by skeletal abnormalities of the upper limb associated with congenital heart defect, mainly atrial and ventricular septal defects. Skeletal defects exclusively affect the upper limbs in the preaxial radial ray distribution and are bilateral and asymmetrical. They range from clinodactyly, absent or digitalised thumb, hypoplastic...
متن کاملDistention of the Immature Left Ventricle Triggers Development of Endocardial Fibroelastosis: An Animal Model of Endocardial Fibroelastosis Introducing Morphopathological Features of Evolving Fetal Hypoplastic Left Heart Syndrome
BACKGROUND Endocardial fibroelastosis (EFE), characterized by a diffuse endocardial thickening through collagen and elastin fibers, develops in the human fetal heart restricting growth of the left ventricle (LV). Recent advances in fetal imaging indicate that EFE development is directly associated with a distended, poorly contractile LV in evolving hypoplastic left heart syndrome (HLHS). In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017